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Abstract 

This Semiannual progress report covers the period from September 1, 

1988 to February 28, 1989 under NASA grant NAG-1-441 entitled "Direct 

Solar-Pumped Iodine Laser Amplifier." During this period, the research 

effort was concentrated on the solar pumped master oscillator power 

amplifier (MOPA) system using n-C3F71. In the experimental work, the 

amplification measurement was conducted to identifj. the optimum 

conditions for amplification of the center's Vortek solar simulator pumped 

iodine laser amplifier. A modeling effort was also pursued to explain the 

experimental results in the theoretical work. The amplification 

measurement of the solar simulator pumped iodine laser amplifier is the 

first amplification experiment on the continuously pumped amplifier. The 

small signal amplification of 5 was achieved for the triple pass geometry of 

the 15 cm long solar simulator pumped amplifier at the n-C3F,I pressure of 

20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 

solar constants. The XeCl laser pumped iodine laser oscillator, which was 

developed' in the previous research, was employed as the master oscillator 

for the amplification measurement. 

it\ 

In the theoretical work, the rate equations of the amplifier was 

established and the small signal amplification was calculated for the solar 

simulator pumped iodine laser amplifier. The amplification calculated from 

the kinetic equations with the previously measured rate coefficients reveals 

very large disagreement with experimental measurement. Moreover, the 

optimum condition predicted by the kinetic equation is quite discrepant 

with that measured by experiment. This fact indicates the necessity of study 
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in the measurement of rate coefficients of the continuously pumped iodine 

laser sys tern. 
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1. Introduction 

A space based solar pumped laser is a suitable energy source for the 

inter-planet space vehicles, for the transportation system on the moon and 

for the various rovers on the near Earth planets due to the long range 

transmission capability. However, the solar pumped laser research is on the 

fundamental stage and the suitable laser material is not yet found. Among 

the various laser materials proposed to be used in the solar pumped laser, 

only Nd:YAG [l] and the perfluoroalkyl iodide (such as C3F71 and C,F,I) [2,3] 

were successfully pumped by the solar radiation and the laser output power 

over 10 W could be obtained in the CW operation. 

These two laser materials have advantages and disadvantages each 

other. The Nd:YAG is solid laser material so that the system could be rugged 

and the extractable power density is high compared with the gas material 

such as the perfluoroalkyl iodide. But it has a serious thermal distortion 

during continuous pumping and thus the heat removal from the laser 

material is a major issue. 

On the contrary, the perfluoroalkyl iodides are gas media so that there 

is no thermal problem and the heat removal is relatively easy. However, the 

peak absorption wavelengths (- 272 nm for C3F,I; - 286 nm for t-C,F,I) of 

the alkyl iodides are located at the far  U V  end of the solar spectrum and the 

absorption band is very narrow (- 50 nm). Thus the utilization of the solar 

radiation is very low (- 1 % for C,F,I: - 2 % for t-C,F,I) compared with 

Nd:YAG laser material (- 14 %). Though the alkyl iodides are not suitable 

laser medium for the solar pumped laser due to the aforementioned 

disadvantages,-the threshold pumping power could be reduced to about 100 
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solar constants [3] which suggests the simplicity of the solar collector. 

A CW laser has the best applicability in space. However, the pulsed 

laser also may be suitable for certain application in space such as the laser 

propulsion of the space vehicles. Moreover, due to the weak solar 

irradiation (1.35 KW/m2) on the earth surface, the amplifier scheme based 

on energy storage principle is more suitable for the development of the high 

power laser using laser materials with a long excited state lifetime such as 

iodine. 

In this period of research, the amplification experiment was carried 

out by using a continuously solar simulator pumped iodine laser amplifier to 

study the energy storage capability of the iodine laser material. In the 

amplification measurement, the previously developed XeCl laser pumped 

iodine laser oscillator was employed as the master oscillator. At the same 

time, the theoretical calculation of the gain in the solar simulator pumped 

amplifier was performed to compare with the experimental results. 

11. Solar Simulator Pumped Amplifier 

The solar simulator used in this experiment is a vortex-stabilized 

continuous argon arc lamp (Vortek Industries Ltd.). This simulator can be 

operated with electrical power up to 100 KW. This solar simulator was 

employed in the CW iodine laser operation using n-C3F,I in the previous 

research [3]. The spectral irradiance on the amplifier tube surface was 

measured when an elliptic cylindrical reflector was used to focus the 

radiation emerging from the arc lamp into the amplifier tube. The 

measured spectral irradiance in the range from 200 nm to 400 nm was 
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almost equivalent to that of 1500 solar constant spectrum. 

The experimental setup is shown in Fig. 1 for the measurement of the 

continuously pumped iodine laser amplifier by the solar simulator. The 

iodine laser oscillator was pumped by a XeCl laser developed in the previous 

research [4]. The iodine laser output was polarized by inserting two 

Brewster plates in the optical resonator of the iodine laser oscillatorthus the 

reflection from the windows of the amplifier could be minimized. 

The pumped length of the amplifier tube by the solar simulator is only 

15 cm and the inner diameter of the tube in 2 cm. The n-C3F71 gas in the 

amplifier tube is flowed at the speed in the range from 2 m/sec to 8 m/sec 

by adjusting the valves of the gas evaporator and the condenser. The flow 

velocity was monitored with a flowmeter (Hastings Flowmeter Model NALL- 

100 K). 

As a first attempt, the amplification was measured at the pumping 

intensity of 1500 solar constants for the amplifier tube filled with 20 torr of 

n-C,F71 and with the flow velocity fured at 7 m/sec. The laser energy input 

to the amplifier was 1 mJ with 0.5 cm in diameter when the laser oscillator 

was operated at 2 Hz but the input energy was reduced to 0.7 mJ  when the 

laser oscillator was operated a 5 Hz due to the reduction of the XeCl 

pumping laser intensity. Thus the energy density of the input to the 

amplifier is 5.1 mJ/cm2 when the laser is operated at 2 Hi, which is far less 

than the saturation energy density that is given by E, = hv / CT (E, E 22 

mJ/cm2 for 20 torr of n-C,F,I); Therefore the amplification is in the small 

signal region. 

The amplification result of the preliminary experiment is shown in 

Table 1. Here the amplification is defined as a = E,,,/E, and is denoted at 
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the bottom of the table. 

output 

energy 

Table I. Amplification by Solar Simulator Pumped Amplifier 

Oscillator operation frequency 

2 H z  5 Hz 

Without pumping 1.0 mJ 0.7 mJ 

amplifier 

With pumping 1.5 mJ 1.1 mJ 

amplifier 

Experimental 

Amplification 

(a) The oretic a1 

(see 111) 

1.5 

1.67 

1.57 

1.67 

In the next step of experiment, the amplification was measured for 

the triple pass amplifier as shown in Fig. 2. This triple pass increases the 

gain length approximately three tirnes compared with the single pass 

geometry. 'The experimental results are shown in Fig. 3 and Fig. 4. The 

maximum amplification was obtained at the flow velocity of about 6 m/sec 

and at the pressure of 20 torr for both 2 Hz and 5 Hz operations of the 

iodine laser oscillator. The maximum amplification obtained is about 5. 
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111. Theoretical Calculation of Amplification 

To explain the experimental results, the amplification was evaluated 

theoretically in this research period. The most important quantity to be 

known is the density of the excited atomic iodine, [I*], for the evaluation of 

the amplification factor. To a good approximation, the excited atomic iodine 

density in the amplifier is governed by the following rate equation, 

The first term in the right hand side represents the pumping rate @.e. the 

photodissociation rate), the second term the quenching of the excited 

atomic iodine by the parent molecule, the third term the deexcitation by 

way of the spontaneous emission and the last term the recombination of the 

excited atomic iodine with the radical. The suitable approximations for the 

equation (1) to be solved analytically are (1) the density of the perfluoroalkyl 

iodide is constant during the pumping process because of the weak 

photodissociation rate (- 1 %), (2) the radical density is equal to the excited 

atomic iodine density, (3) the lifetime of the excited atomic iodine is , 

independent on the pressure. With these approximations, the differential 

equation (1) can be solved and the solution is given as 

2 c [ 1 - exp(-I b2 + 4ac t)] 

(G + b) +(- - b) e x p ( - G  t) 
[I*] = 
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where a = k, b = Q[RI] + 1 and c = Wp [RI]. If we adopt the values 

k = 1 x 

Wp [RI] = 3.12 x 10l8 /sec as was calculated in the previous report [4], the 

excited atomic density is calculated from the equation (2) at various times. 

When the gas is flowed as in our experiment, the atomic excited iodine 

density varies along the axis of the amplifier tube. Thus the average excited 

atomic iodine contributes to the amplification. The average excited atomic 

iodine density calculated from the equation (2) is 5.7 x 1015 /cm3 when the 

fill pressure is 20 torr and the flow velocity is 7 m/sec. 

z 
cm3/sec [5], Q = 3 x cm3/sec [sec] [6], 1 = 7.9 /sec and 

2- 

The small signal amplification a, which is defined as the ratio of the 

output energy density (J/cm2) from the amplifier to the input energy density 

(J/cm2), is given as 

a = exp(o N L) (3)  

where ois the stimulated emission cross section, N is the excited atomic 

iodine density and L is the length of the amplifier. The excited atomic 

iodine density to be substituted to equation (3) depends on the duration of 

the input laser pulse to the amplifier due to the finite relaxation time 

between the hyperfine levels of the excited state. In this experiment, the 

input pulse duration is about 25 nsec. Thus the total excited atomic iodine 

in the two hyperfine sublevels can contribute to the amplifier because the 

relaxation time in the hyperfine levels of the excited state is about 20 nsec 

[6]. Therefore the small signal amplification calculated from the equation 

(3) is 1.67 for the case of the single pass geometry. The stimulated 
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emission cross section adopted in this calculation is 6.0 x 

amplification calculated for the triple pass amplifier is plotted in Fig. 3 and 

Fig. 4 with the experimental results. 

cm2 [7]. The 

IV. Kinetic Modeling of the Solar Simulator-Pumped Amplifier 

The kinetic modeling effort has continued to identify the gain 

characteristics of the master oscillator power amplifier (MOPA) using the 

lasant n-C,F71. These calculations are compared with the experimental 

results of a triple pass amplification, which was obtained at various gas 

pressures and flow velocities. In the calculation of the gain in the MOPA 

system, it is found that the .output characteristics of the system are 

determined by the degree the molecular iodine mcreases inside the 

amplifier tube. 

The kinetic model will be used to establish a scaling law for a solar- 

pumped iodine laser power generation system to be used for space-to-space 

power transmission. 

A Theoretical Considerations for the MOPA System 

The gain coefficient before the input pulse is sent through the 

ampllfylng medium is calculated and the small signal gain is then calculated 

and compared to experimental results. Since the input energy density is 

very low compared with the saturation energy density, the small signal gain 

G,, of the triple pass amplifier can be approximated by [SI 
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fL 
GSS= exp (30 . ([I*] - $4) dz} b 

where 0 is the stimulated emission cross-section, L is the pumped length 

(15 cm) plus the downstream length (16.5 cm), and z represents the axial 

tube distance. The inversion density is given by ([I*]-l/2 [I]) and is a 

function of axial distance, which represents a maximum energy extraction 

efficiency. In reality, since the input pulse to the amplifier is about 25 ns, 

the energy extraction efficiency [9] is about 45%. The kinetic model used to 

find the gain is given below as a set of coupled nonlinear differential 

equations 



, 

where tRI and are the photodissociation rate for the parent molecule RI 

and molecular iodine I, respectively, A is the Einstein coefficient, and zD is 

the diffusion time constant [lo]. The kinetic reaction rates [ll] are given in 

Table 11. It  can be noted that the above differentials do not involve the 

photon density of the amplifier tube since the inversion is calculated before 

the amplified pulse is injected into the system. Expanding the above total 

differentid to incorporate the flowing gas, the differential of the densities of 

the gas species [XI] become [l 11 

d[xJ/dt = a[xJ/at + v a[xJ/az i=1,2, ..., 6 

where the index i indicates the six gas species given above, and v=dz/dt is 

the flow rate in the z direction. 

In the limit where the system reaches a steady state, the partial 

derivative with respect to time is zero and the set of differentials are solved 

as a function of z. I t  can be assumed that the system reaches a steady state 

between input pulses since the system operates between 2 to 5 Hz and is 

completely replenished between pulses. This calculation results in the gas 

densities given as a function of axial tube distance just before the oscillator 

pulse is injected into the cavity. 
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R A Comparison of Theoretical Results with Experimental Data for the 

MOPA 

An amplification experiment was preformed with a triple pass 

geometry varying the flow speed of the amplifymg medium n-C,F,I for three 

pressures 10, 20, and 30 torr. The gain measured for this case is shown in 

figure 5 and compared with the theoretical calculations of the small signal 

gain G,. The peak gain was obtained experimentally at about 20 torr for a 

gas flow speed of about 7 m/s, but the maximum gain is calculated to be at 

about 2 m/s for a pressure of 10 torr. In addition, the calculation indicates a 

net absorption for 20 and 30 torr which would be due to I, buildup, and the 

absorption for 30 tarr is greater than that of 20 torr for the same reason. In 

figure 6 the gain coefficient per unit distance for various flow velocities is 

given as a function of fdl pressure. The peak gain is for a flow velocity of 1 

m/s and a fill pressure of 13 torr. Figure 7 indicates the increase in a peak 

[I,] as a function of fill pressure. If a comparison between the maximum I, 

density and the gain coefficient is made, it can be seen that the increase in 

[I,] mitigates the inversion. Therefore, the inversion does not continue to 

increase as a function of pressure. On the other hand, as the flow velocity 

increases, the inversion does not increase as quickly. - 

In figures 8 through 13 the instantaneous gain coefficient 

0 ([I*] - 1/2 [I]), the integrated gain coefficient 

. J o  
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and the molecular iodine density averaged over the distance of the tube, 

given as 

are plotted as a function of distance. 

and 2 m/s for a 11 torr fill pressure (figures 8 and 9). it can be seen that the 

slower production of [I*] allows [I,] to become dense enough to quench most 

of the gain in the pumped region of the amplifier. I t  is seen in figure 8 that 

after 15 cm, at which distance the amplifier is no longer illuminated, the 

inversion becomes insignificant: therefore, there is very little contribution 

to the gain after this distance. Here, for the maximum gain the inversion is 

positive throughout the pumped distance as apposed to figure 9 . In figures 

10. 11. 12, and 1 3  the fill pressures are 10, 12, 13. and 1 4  torr respectively 

for a flow velocity of 1 m/s. From these four figures and figure 6, it can be 

seen that the [Iz] does not significantly change the gain until 14 torr where 

the [I,] mediates the inversion inside the illuminated region of the amplifier 

tube. Figure 6 indicates the [I,] is not significant until about 12 torr for a 

flow velocity of 1 m/s. In this case the [I,] increases significantly because of 

the three body reactions given in Table 11: they scale quadratically as the 

pressure of the amplifylng medium increases. 

Comparing flow velocities of 1 m/s 
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V. Discussion 

The experimental results shown in Table I is fairly well coincident 

with the theoretical calculation derived in the previous section. The 

experimental result measured for the triple pass geometry is also coincident 

with the theoretical consideration at the flow velocity of about 6 m/sec. 

However, the amplification measured in experiments at differnt flow 

velocities showes a drastic variation. The amplification decreases abruptly as 

the flow velocity recuces below 6 m/sec and also reduces abruptly as the 

flow velocity increases above 6 m/sec. The discrepancy between the 

theoretical calculation and the experimental result at the low flow velocity 

may originate Erom the ignorance of the quenching of the excited atomic 

iodine by the iodine molecule in the theoretical calculation. Really, in the 

course of experiment, the molecular iodine buildup was so serious that the 

amplification experiment could not be performed below the flow velocity of 

about 2.5 m/sec. However, the reduction in the amplification at the flow 

velocity above 6 m/sec is not explained with the molecular iodine quenching 

of the excited atomic iodine. Thus the main reason of the serious reduction 

at the high flow velocity is considered to be originated from the gas dynamic 

perturbation due to the gas flow. 

The other point need to be mentioned is that the amplification 

measured at 20 torr of fill pressure is larger than the value of amplification 

measured at 30 torr. The theoretical calculation showes the higher 

amplification at 30 torr of fill pressure on the contrary to the experimental 

result. This fact indicates that the excited atomic iodine is more seriously 

quenched by the parent molecule when the pumping-period is long. 
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Moreover the gas dymamic perturbation seems to contribute to the increase 

of the quenching rate. 

The kinetic model calculation for the MOPA system has been carried 

out at the same time. The results of calculation is compared with the 

experimental data in Fig. 5. The theoretical result is rather contradictory to 

the experimental result. This indicates that some of the rate coefficients do 

not realistically explain the experimental results. 

VI. Conclusion 

The amplification of a continuously solar simulator pumped iodine 

laser amplifier has been measured for the first time in this research period. 

This experiment is a proof of the feasibility of the solar pumped iodine 

MOPA system. The small signal amplification of 5 was measured for triple 

pass of a 15 cm long amplifier with diameter 2 cm when n-C,F71 gas was 

flowed with 6 m/sec at the pressure of 20 torr. The optimum value of 

pressure times diameter of the amplifier is found to be 40 torrmcm for the 

solar simulator pumped amplifier which is far  different from the case of the 

short pulse pumped high power iodine laser amplifier (Ped E 150 torrmcm). 

An-analytical calculation for the amplification of the solar simulator 

pumped amplifier was carried out at the same time and the result was 

consistent with the experimentally measured peak amplification but the 

calculation could not explain the variation of amplification with the flow 

velocity of the n-C,F,I gas in the amplifier tube. A more precise kinetic 

model calculation was carried out in this period of research. However, the 

result of th calculation could not q l a i n  the experimental result and 
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moreover the calculation was rather contradictory to the experimental 

result. These discrepancy between the theoretical results and the 

experimental result seems to originate from the unsuitableness of the rate 

coefficients to this experiment and from the lack of understanding of the 

gas dynamic perurbation to the excited atomic iodine. Thus more 

concentrated research efforts on the kinetic study and on the gas dynamic 

effect are necessary in the future research. 
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TABLE II - Reaction rate coefficients and their associated reactions for 
the lasant n-C$J along wi th  the parameters used to modify the optical 
time constant 

Lasant 

Reactions 

R + I' - RI 

R + I - R I  

R + R - R ,  

R + R I - R , + I  

R + I, - RI + I 

I' + I + RI - I, + RI 

I + I + R I - . I , + R I  

I' + 1 + I, - I, + I, 

I + I + I, - I , +  I, 

I' + I, - I + I, 

I' + RI - I + RI 

Reactlon Rate Coefflctent 

(cm")/sec 

.go00 x IO-is  

.8050 X lo-'' 
.2600 X lo-" 

,1000 x 10- 

.loo0 x lo-= 

.4440 x loJ1 

.3000 X lo-'' 

.3034 X loew 

.3015 X 

.4760 X lo-'' 

.6587 X lo-" 

.a700 

.0313 
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